Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.
Subject Title: Fluid Flow Operation

<table>
<thead>
<tr>
<th>Q No.</th>
<th>Answer</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>Attempt any SIX of the following</td>
<td>12</td>
</tr>
<tr>
<td>1A-a</td>
<td>Newton’s law of viscosity</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Newton law of viscosity states that shear stress is proportional to shear rate and the proportionality constant is the viscosity of the fluid</td>
<td></td>
</tr>
</tbody>
</table>
| | \[
| | \frac{F}{A} = \mu \frac{dv}{dx} \]
| | Where \(F / A \) is the shear stress \(\tau \) \(
| | \frac{dv}{dx} \) is the shear rate or velocity gradient. | |
| | \(\mu = \text{viscosity}. \) | |
| 1A-b | **Difference between ideal fluid and actual fluid (four points):** | \(\frac{1}{2}\) mark each |
| | **Ideal fluid** | |
| | 1. Offers no resistance to flow/deformation ie no viscosity | |
| | 2. Frictionless | |
| | 3. Incompressible | |
| | 4. Imaginary fluid | |
| | **Actual fluid** | |
| | 1. Offers resistance to flow/deformation ie it has viscosity | |
| | 2. Exhibits friction | |
| | 3. Compressible or incompressible | |
| | 4. Real fluid | |
| 1A-c | **Significance of Reynold’s Number** | 2 |
| | \(t \) is a dimension less number which indicates the nature of flow.\[
| | \text{If} \quad N_{Re} < 2100 \text{ flow is laminar} \]
| | \[
| | \quad N_{Re} < 4000 \text{ flow is turbulent} \]
| | \[
| | \quad 2100 < N_{Re} < 4100 – flow is transition \]
| | \text{It is the ratio of inertial force to viscous force.} | |
| 1A-d | **Friction loss due to sudden contraction:** | 1 |
| | The frictional loss due to sudden contraction is proportional to velocity head of the fluid in the small diameter pipe. |
Friction loss due to sudden expansion

Friction loss due to sudden expansion \((h_{fe})\) is proportional to the velocity head of the fluid in the small diameter pipe.

\[
(h_{fe}) = \frac{u_1^2}{2} K_e
\]

And \(K_e = \left[1 - \frac{A_1}{A_2}\right]^2\)

<table>
<thead>
<tr>
<th>1A-e</th>
<th>Equivalent length of pipe fittings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frictional loss in fittings and valves is expressed as equivalent length of fittings. The equivalent length of fitting is that length of straight pipe of same nominal size as that of fitting which would cause the same fractional loss as that caused by the fitting.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1A-f</th>
<th>Reason for priming in centrifugal pump:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>If the pump is initially full of air, air binding occurs and the pump is not capable to deliver the liquid. To avoid air binding, the centrifugal pump needs priming.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1A-g</th>
<th>Application of jet ejectors (4 points):</th>
</tr>
</thead>
</table>
| | 1. Used for handling corrosive gases that would damage mechanical vacuum pump.
| | 2. It is used for handling large volume of vapour at low pressure.
| | 3. Crude oil distillation
| | 4. Petrochemical processes
| | 5. Edible oil deodorization
| | 6. Organic motivated systems
| | 7. Fertilizer plant operations | \(\frac{1}{2}\) mark each |
1B Attempt any TWO of the following

1B-a Derivation of equation of continuity:

Mass balance states that for a steady state flow system, the rate of mass entering the flow system is equal to that leaving the system provided accumulation is either constant or nil.

![Diagram of flow](image)

Let v_1, ρ_1, and A_1 be the average velocity, density, and area at entrance of tube & v_2, ρ_2, and A_2 be the corresponding quantities at the exit of tube.

Let \dot{m} be the mass flow rate

Rate of mass entering the flow system = $v_1 \rho_1 A_1$

Rate of mass leaving the flow system = $v_2 \rho_2 A_2$

Under steady flow conditions

$\dot{m} = \rho_1 v_1 A_1 = \rho_2 v_2 A_2$

$\dot{m} = \rho v A = \text{constant}$ \hspace{1cm} Equation of continuity

1B-b Sketches of (i) Gate valve
Subject Title: Fluid Flow Operation

(ii) Diaphragm valve

1B-c Characteristic curves of a centrifugal pump:

The characteristics curve shows the relationship between discharge and the various parameters like head, power and efficiency. From the H-Q curve, it is clear that head increases continuously as the capacity is decreased. The head corresponding to zero or no discharge is known as the shut off head of the pump. From H-Q curve, it is possible to determine whether the pump will handle the necessary quantity of liquid against a desired head or not and the
effect of increase or decrease of head. The η-Q curve shows the relationship between pump efficiency and capacity. It is clear from η-Q curve that efficiency rises rapidly with discharge at low discharge rate, reaches a maximum in the region of the rated capacity and then falls. The duty point ie the point where the H-Q curve cuts the ordinate through the point of maximum efficiency shows the optimum operating conditions. The P_B- Q curve gives us an idea regarding the size of motor required to operate the pump at the required conditions and whether or not motor will be overloaded under any other operating conditions.

Attempt any TWO of the following

2-a. Density of flowing fluid = 1.6*1000= 1600 kg / m³
Density of manometric fluid = 13.6*1000= 13600 kg / m³
Pressure along the horizontal plane (common surface) is same.
In the left limb, pressure above the common surface is
\[\text{Pa} + \rho gh = \text{Pa} + 1600 \times 9.81 \times (0.15 - 0.030) = \text{Pa} + 1883.52 \quad \text{...(i)} \]

In the right limb, pressure above the common surface is
\[\rho gh = 13600 \times 9.81 \times 0.15 = 20012.4 \quad \text{...(ii)} \]

Equating (i) and (ii)
\[\text{Pa} + 1883.52 = 20012.4 \]
\[\text{Pa} = 18128.88 \text{ N/m}^2 \]

Pressure in the pipe = 18128.88 N/m²

2-b Hagen-Poiseuille’s equation
\[\Delta P = \frac{32 \mu v L}{D^2} \]

Where \(\Delta P \) – Pressure drop across length \(L \) (Pa)
\(\mu \) – Viscosity of fluid (Pa.s)
\(v \) – Velocity of fluid (m/s)
\(D \) – Diameter of pipe (m)
\(L \) – Length of pipe (m)
Subject Title: Fluid Flow Operation

Subject code: 17426

| 2-c | **Rupture disc:**
| | **Diagram:**
| ![Diagram](image.png) | 2 |

Construction: The ultimate safety device used in pressure vessel to avoid accident is rupture disc. Rupture disc is a non-reclosing pressure relief device. A rupture disc is a one-time-use membrane. They can be used as single protection devices or as a backup device for a conventional safety valve; if the pressure increases and the safety valve fails to operate (or can't relieve enough pressure fast enough), the rupture disc will burst. Rupture discs are very often used in combination with safety relief valves, isolating the valves from the process, thereby saving on valve maintenance and creating a leak-tight pressure relief solution. The membrane is generally made up of metal.

| 2-d | **(i) Volute casing**
| ![Diagram](image.png) | 1 |

In this cross section of the casing increases uniformly to the point of discharge
pipe. This casing helps in producing equal velocity flow all around its circumference and to reduce gradually the velocity of liquid as it flows from the impeller to the discharge pipe, thus changing velocity head into pressure head. These casings can convert only a small percentage of velocity head into pressure head and large amount is lost in eddies. Therefore these pumps produce low heads.

(ii) Vortex casing

For better performance, an annular space known as vortex or whirlpool chamber is provided between the impeller and the volute. Since no work is done on the fluid while in the chamber, its energy remains constant. The velocity of whirl varies inversely as its radial distance from the center. This reduction in velocity increases the efficiency of the pump by reducing the formation of eddies.

<table>
<thead>
<tr>
<th>2-e</th>
<th>Expression to calculate friction factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>For laminar flow</td>
<td>(f = \frac{16}{NRe})</td>
</tr>
</tbody>
</table>

For turbulent flow: \(f = 0.078/(N_{Re})^{0.25} \)
Subject Title: Fluid Flow Operation

2-f

<table>
<thead>
<tr>
<th>Difference between venturimeter and orificemeter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venturimeter</td>
</tr>
<tr>
<td>1. Construction is complex</td>
</tr>
<tr>
<td>2. Costly</td>
</tr>
<tr>
<td>3. More space</td>
</tr>
<tr>
<td>4. Coefficient of discharge (C_v > 0.9)</td>
</tr>
<tr>
<td>5. Pressure loss is less</td>
</tr>
<tr>
<td>6. Pressure recovery is more</td>
</tr>
<tr>
<td>7. can be used when only small pressure head is available</td>
</tr>
<tr>
<td>8. Change of area is gradual.</td>
</tr>
</tbody>
</table>

3

Attempt any FOUR of the following

3-a \[\Delta P = h (\rho_m - \rho)g \text{(Derivation)} \]

Let \(P_1 \) = pressure acting due to process at point 1
P_2 = \text{Pressure acting due to process at point 2} \\
(\text{if right leg is open to atmosphere, } P_5 \text{ is atmospheric pressure})

\rho_m - \text{density of manometric fluid} \\
\rho - \text{Density of flowing fluid}

The differential pressure acting across the manometer can be determined by using principle of hydrostatic equilibrium.

As per this principle, pressure exerted by height of liquid column can be expressed as \(P = \rho gh \) \(\ldots \ldots (1) \)

Where \(h \) is the height of liquid column (m)

By applying this principle, pressure acting at point 1 can be expressed as \(P = P_1 \) \(\ldots \ldots (2) \)

At point 2 in left limb \\
\(P_2 = P_1 + (x + \Delta h) \rho g \) \(\ldots \ldots (3) \)

By using the principle that fluid exert same pressure at same level, we can write \\
\(P_2 = P_3 \) \(\ldots \ldots (4) \)

\(P_3 = P_2 = P_1 + (x + \Delta h) \rho g \) \(\ldots \ldots (5) \)

Similarly pressure exerted at point 4 will be less than \(P_3 \) by magnitude equal to pressure exerted by mercury column of height \(\Delta h \)

\(P_4 = P_3 - \Delta h \rho_m g \) \(\ldots \ldots (6) \)

Using similar procedure, we can write \(P_5 \) as \\
\(P_5 = P_4 - x \rho g \) \(\ldots \ldots (7) \)

Substituting the value of \(P_3 \) and \(P_4 \) from equation (5) and (6), \\
\(P_5 = P_3 - \Delta h \rho_m g - x \rho g = P_1 + (x + \Delta h) \rho g - \Delta h \rho_m g - x \rho g \)

\(P_1 \) is upstream pressure and \(P_5 \) is downstream pressure

\(P_1 > P_5 \)

Simplifying the above equation, we get \(P_1 - P_5 = \Delta h (\rho_m - \rho)g \)

\(\Delta P = \Delta h (\rho_m - \rho)g \)
3-b Diagram of fittings with their application

(i) Plug

Plug is used for termination of pipeline.

(ii) Cross

It is used to join 4 pipes of same diameter connected to form 4 pipelines at 90° to each other. In other word, cross connects 4 pipes of same diameter.

3-c Working of double acting reciprocating pump:

The working could be explained as follows.

(i) Before starting pump, discharge valve is opened. It is important as failure to do so may result in unsafe condition leading to pressure rise.
(ii) Double acting has fluid in contact on both sides of the piston. Due to two suction and two delivery valve, when left chamber of pump is in suction stroke, at the same time discharge of fluid takes place from the right chamber.

(iii) During operation, one chamber gets filled and second gets emptied and vice versa.

(iv) Fixed rpm of crank and single cylinder gives fixed volume of discharge. The discharge can be varied either by changing the rpm or length of the stroke or by using either duplex or triplex pump.

Comparison between compressor and fan on the basis of following points

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Compressor</th>
<th>Fan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>High speed machines</td>
<td>Low speed machines</td>
</tr>
<tr>
<td>Pressure developed</td>
<td>Can develop pressure up to several hundred atmospheres.</td>
<td>Pressure developed is low up to 0.04 atmosphere.</td>
</tr>
<tr>
<td>Flow rate</td>
<td>Flow rate of gas handled by compressor depends upon pressure developed and requirement; however compressor can handle very large volume of fluid.</td>
<td>Fan can handle large volume of fluid, however due to low pressure developed; the capacity is limited compared to compressor.</td>
</tr>
<tr>
<td>Efficiency</td>
<td>Around 80 to 85% for reciprocating compressors and up to 90% for centrifugal</td>
<td>Around 70%</td>
</tr>
</tbody>
</table>
Newtonian fluids:
Fluids which obey Newton’s law of viscosity are known as Newtonian fluids.
Generally low viscosity fluids exhibit Newtonian flow behavior.
Eg: Gases, water and low viscosity liquids.

Non-Newtonian fluids:
Fluids which do not obey Newton’s law of viscosity are known as Non-Newtonian fluids.
Eg: Sewage and sludge, rubber latex, polymer solutions, starch solutions, toothpaste, tomato ketchup.

3-f NPSH
Net Positive suction Head (NPSH) is the pressure required at the pump inlet in excess of the vapour pressure of the liquid. In order to avoid cavitation in pump, NPSH provides the guideline about positive pressure to be maintained.
For small pumps, the required value is around 2 to 3 m; however it can vary with impeller speed, discharge and liquid temperature.

Equation:
The available NPSH is calculated by following formula
NPSH = (Pa – Pv)/ρg – h₁fs - Za
Where
Pa - Pressure acting on liquid surface in reservoir (N/m²)
ρ - Density of liquid (kg/m³)
g - Acceleration due to gravity (m/s²)
Pv - Vapour pressure at the given temperature (N/m²)
h₁fs = head loss due to friction in suction pipe (m).
Za - height difference between level of liquid in the reservoir and pump inlet (m).

4 Attempt any FOUR of the following
4-a Difference between Pipes and Tubes

<table>
<thead>
<tr>
<th>Sr.No.</th>
<th>Pipes</th>
<th>Tubes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>Thick walled</td>
<td>Thin walled.</td>
</tr>
<tr>
<td>2)</td>
<td>Available in standard length of about 6m.</td>
<td>Available in coils several meter long.</td>
</tr>
<tr>
<td>3)</td>
<td>Pipes materials : ferrous</td>
<td>Tubes made from non-ferrous materials like brass, copper, aluminum</td>
</tr>
<tr>
<td>4)</td>
<td>Pipe inner surface is usually rough</td>
<td>Tube inner surface is very smooth</td>
</tr>
<tr>
<td>5)</td>
<td>Pipe sections are joined by screwing, flanging or welding</td>
<td>Tube pieces are joined by brazing, soldering or flared fitting</td>
</tr>
<tr>
<td>6)</td>
<td>Pipe sizes are decided by schedule number</td>
<td>Tube sizes are expressed by BWG (Birmingham Wire Gauge)</td>
</tr>
</tbody>
</table>

1 mark each for any 4 points

4-b

\[D = 25\text{mm} = 0.025\text{m} \]
\[\mu = 0.0008 \text{ Pa.s} \]
\[\rho = 1000 \text{ kg/ m}^3 \]

At critical velocity, transition from laminar to turbulent flow starts and value of \(N_{Re} \) is taken as 2100.

\[N_{Re} = \frac{D u_c \rho}{\mu} \]

\[2100 = (0.025 \times u_c \times 1000) / 0.0008 \]

\[u_c = 0.0672 \text{ m/s} \]

Critical velocity = 0.0672 m/s
Subject Title: Fluid Flow Operation

<table>
<thead>
<tr>
<th>4-c</th>
<th>Diagram of reciprocating compressor:</th>
</tr>
</thead>
</table>

Diagram showing parts of a reciprocating compressor:
- Delivery Valve
- Cooling Jacket
- Low Pressure Air In
- Suchim Valve
- Cylinder
- Piston
- Connecting Rod
- Crank

OR
4-d Rotameter is called variable area meter

The schematic diagram of rotameter tube is shown in the fig below. From the diagram, it is clear that area available for flow depends upon annular space between float and tapering tube. The area available for flow varies with float position and float position decides flow rate.
Therefore as flow rate of fluid flowing through rotameter tube varies with area available for flow (area between float and tube), it is known as variable area meter.
4-e Difference between form friction and skin friction:

<table>
<thead>
<tr>
<th>Form friction</th>
<th>Skin friction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. When boundary layer separates and form eddies or wake, then the associated friction is known as form friction.</td>
<td>1. The friction due to unseparated boundary layer is known as skin friction.</td>
</tr>
<tr>
<td>2. In turbulent flow, loss due to turbulent flow is dominant</td>
<td>2. In laminar flow or viscous flow, loss due to skin friction is dominant</td>
</tr>
</tbody>
</table>

4-f Atmospheric pressure:
Pressure exerted by 760mm of mercury column at sea level is considered as 1 atmosphere. In equation \(P = \rho gh \), by substituting \(h = 0.76 \text{m} \), \(\rho = \rho_{\text{Hg}} \) and \(g \), we get value of atmospheric pressure in N / m\(^2\).

Gauge pressure:
Pressure indicated by a pressure gauge either above or below atmospheric pressure is considered as gauge pressure.

Sketch
Subject Title: Fluid Flow Operation

5 Attempt any TWO of the following

5-a
\[\begin{align*}
D &= 25 \text{mm} = 0.025 \text{m} \\
\rho &= 1000 \text{ kg/m}^3 \\
\mu &= 8 \times 10^{-4} \text{ Pa.s} \\
\dot{m} &= 1 \text{ kg/s} \\
L &= 100 \text{ m} \\
A &= \frac{\pi D^2}{4} = \frac{\pi \times (0.025)^2}{4} = 4.906 \times 10^{-4} \text{ m}^2 \\
V &= \frac{\dot{m}}{\rho A} = \frac{1}{1000 \times 4.906 \times 10^{-4}} = 2.083 \text{ m/s} \\
f &= 0.0001 \\
h_{fs} &= \frac{4fLV^2}{2D} = \frac{4 \times 0.0001 \times 100 \times 2.083^2}{2 \times 0.025} = 3.3237 \text{ J/kg} \\
\Delta P &= h_{fs} \times \rho = 3.3237 \times 1000 = 3323.7 \text{ Pa} = 3.3237 \text{ kPa} \\
\text{Pressure drop} &= 3.3237 \text{ kPa}
\end{align*} \]

5-b
Data:
\[\begin{align*}
Q &= 12 \text{ lit/s} \\
D &= 3 \text{ cm} = 0.03 \text{ m} \\
\rho &= 870 \text{ kg/m}^3 = 0.87 \text{ kg/lit} \\
i) \quad Q \text{ in } \text{ m}^3/\text{s}
\end{align*} \]
Subject Title: Fluid Flow Operation

Subject code: 17426

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Q = 12 lit/s = 12×10^{-3} m3/s</td>
<td></td>
</tr>
<tr>
<td>ii) (\dot{m}) in kg/s</td>
<td></td>
</tr>
<tr>
<td>$(\dot{m}) = Q \times \rho = 12 \times 10^{-3} \times 870 = 10.44$ Kg / S</td>
<td></td>
</tr>
<tr>
<td>iii) U in m/s</td>
<td></td>
</tr>
<tr>
<td>Q = u \times A</td>
<td></td>
</tr>
<tr>
<td>Area of pipe = $\pi/4 \times D^2 = \pi/4 \times (0.03)^2 = 7.065 \times 10^{-4}$ m2</td>
<td></td>
</tr>
<tr>
<td>U = $12 \times 10^{-3} / 7.065 \times 10^{-4} = 16.98$ m / S</td>
<td></td>
</tr>
<tr>
<td>iv) G in kg/m2.s</td>
<td></td>
</tr>
<tr>
<td>G = Mass flow rate / Area of pipe = $10.44 / 7.065 \times 10^{-4} =$</td>
<td></td>
</tr>
<tr>
<td>14777.07 Kg/m2.S</td>
<td></td>
</tr>
</tbody>
</table>

5-c Pitot Tube

Diagram:

Construction and working:

It consists of glass tube, large enough for capillary effects to be negligible and bent at right angles. The tube is dipped vertically in the flowing stream of fluid with its open end A directed to face the flow & the other open end projecting above the liquid surface. The fluid enter the tube & the level of the fluid in the tube exceeds that of the fluid surface because the end A of the tube is a
Subject Title: Fluid Flow Operation

| Stagnation point where the fluid is at rest & the fluid approaching end A divides at this point & passes around the tube. As at stagnation point, the kinetic energy is converted into pressure energy, the fluid in the tube rises above the surrounding fluid surface by a height that corresponds to the velocity of fluid approaching the end A of the tube. Hence, the velocity at any point in the flowing stream can be determined by dipping the pitot tube to the required point and measuring the height \(h \) of the fluid raised in the tube above the free surface. Considering loss of energy, the above equation is modified to get actual flow velocity as

\[
u = C \sqrt{2gh}
\]

\[C = \text{Coefficient of pitot tube (} C = 0.98\)

Application:

It is used for finding the air speed of an air craft, water speed of a boat, liquid flow in pipes and channels.

<table>
<thead>
<tr>
<th>Attempt any TWO of the following</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-a Screw pump</td>
<td></td>
</tr>
<tr>
<td>Construction:</td>
<td></td>
</tr>
<tr>
<td>It consists of a rotor that rotates in stator made of rubber or other similar material. The rotor is a true helical metal screw while the stator has a double helical thread pitched opposite to the spiral on the rotor. The liquid to be pumped moves continuously towards a discharge through the voids between the rotor and stator. Working: As the rotor rotates, a reduced pressure is created on the inlet side, the liquid is forced into the pump, it is trapped between the rotor and stator and finally is</td>
<td>2</td>
</tr>
</tbody>
</table>
forced out of the discharge side of the pump.

Diagram:

Application: Screw pump is used to handle highly viscous materials, gritty liquids. It is widely used in chemical industries for feeding slurries containing higher proportions of solids to filtration equipment.

6-b **Bernoulli’s theorem:**

Statement: For steady, irrotational flow of an incompressible fluid, the sum of pressure energy, kinetic energy & potential energy at any point is constant.
Let us consider an element of length ΔL of a stream tube of constant cross sectional area as shown above.

Let us assume that cross-sectional area of element be A & the density of the fluid be ρ. Let u & P be the velocity & pressure at the entrance & $(u + \Delta u)$, $(P + \Delta P)$ are the corresponding quantities at the exit.

The forces acting on the element are

1) The force from upstream pressure $= P.A$ (acting in the direction of flow)

2) The force from downstream pressure normal to the cross-section of the tube $= (P + \Delta P).A$ (in opposite direction of flow)

3) The force from the weight of fluid (gravitational force acting downward) $= \rho.A.\Delta L.g$

 The component of this force acting opposite to direction of flow $= \rho.A.\Delta L.g \cos \theta$

 The rate of change of momentum of the fluid along the fluid element $= \dot{m} [u + \Delta u - u] = \dot{m} \Delta u$

 As mass flow rate $\dot{m} = \rho. u A . \Delta u$

According to Newton’s Second law of motion

{sum of forces acting in the direction of flow} = {rate of change of momentum of a fluid}
Subject Title: Fluid Flow Operation

P.A - (P + \Delta P).A - \rho.A.\Delta L.g\cos\theta = \rho. uA . \Delta u

-\Delta P.A - \rho.A.\Delta L.g\cos\theta = \rho. uA . \Delta u

\Delta P.A + \rho.A.\Delta L.g\cos\theta + \rho. uA . \Delta u = 0 \quad \text{Eq.I}

Dividing each term of eq.I by A.\Delta L. \rho we get

\frac{\Delta P}{\rho \Delta L} + g. \cos\theta + \frac{u. \Delta u}{\Delta L} = 0

As \cos\theta = \frac{\Delta Z}{\Delta L}, we can write

\frac{1}{\rho} \frac{\Delta P}{\Delta L} + g \frac{\Delta Z}{\Delta L} + u \frac{\Delta u}{\Delta L} = 0 \quad \text{Eq.II}

If we express the changes in the pressure, velocity, height etc. in the differential form, eq. II becomes

\frac{1}{\rho} \frac{dP}{dL} + g \frac{dZ}{dL} + \frac{d}{dL} \left(\frac{u^2}{2}\right)

Which can be written as

\frac{dP}{\rho} + g \cdot dZ + \frac{d}{dL} \left(\frac{u^2}{2}\right) = 0 \quad \text{Eq.III}

Eq.III is called as Bernoulli Equation. It is differential form of the Bernoulli Equation. For incompressible fluid, density is independent of pressure & hence, the integrated form of eq.III is

\frac{P}{\rho} + gZ + \frac{u^2}{2} = \text{constant}

Hence proved that low of conservation of energy is applicable for flowing fluid. The Bernoulli Equation relates the pressure at a point in the fluid to its position & velocity.

Vacuum pump:
A vacuum pump is any compressor which takes the suction at a pressure below
Example of vacuum pump: Steam Jet Ejector

Steam Jet Ejector

Principle:
A steam jet ejector is a type of pump that uses the venturi effect of a converging-diverging nozzle to convert the pressure energy of a motive fluid (steam) to velocity energy which creates a low pressure zone (vacuum) that draws in and entrains a suction fluid. An ejector is a pumping device. It has no moving parts. Instead, it uses a fluid or gas as a motive force. Very often, the motive fluid is steam and the device is called a “steam jet ejector.” Basic ejector components are the steam chest, nozzle, suction, throat, diffuser and the discharge.

Working:
Subject Title: Fluid Flow Operation

| Steam at about 7 atm is admitted to a converging-diverging nozzle, from which it issues at supersonic velocity into a diffuser cone. The air or other gas to be moved is mixed with the steam in the first part of the diffuser, lowering the velocity to acoustic velocity or below. In the diverging section of the diffuser, the kinetic energy of the mixed gas is converted to pressure energy so that the mixture can be discharged directly to atmosphere. |
|---|---|
| 3 |